✅ Công thức tính lim ⭐️⭐️⭐️⭐️⭐️

Khái niệm về giới hạn hàm số, cách tính và bài tập áp dụng

Giới hạn hữu hạn

Giới hạn vô cực, giới hạn tại vô cực

Giới hạn một bên

Bài tập áp dụng để tìm giới hạn

Ví dụ 8: Tìm giới hạn sau

Mối quan hệ giữa giới hạn một bên và giới hạn tại một điểm

Bảng các công thức tính giới hạn hàm số

Một số phương pháp tính giới hạn bằng máy tính

Tính giới hạn của dãy số

Cách 1: Sử dụng định nghĩa để tìm giới hạn 0 của dãy số

Cách 2: Tìm giới hạn của dãy số bằng công thức

Một số công thức ta thường gặp khi tính giới hạn hàm số như sau:

Công thức trên có thể biến tấu thành các dạng khác tuy nhiên về bản chất thì không thay đổi.

Cách 3: Sử dụng định nghĩa để tìm giới hạn hữu hạn

Cách 4: Sử dụng các giới hạn đặc biệt cùng với định lý để giải quyết các bài toán tìm giới hạn dãy số

Cách 5: Áp dụng công thức tính tổng cấp số nhân lùi vô hạn, tính giới hạn, biểu thị một số thập phân vô hạn tuần hoàn thành phân số.

Chứng minh một dãy số có giới hạn

Áp dụng định lý Vâyơstraxơ:

  • Nếu dãy số (un) tăng và bị chặn trên thì nó có giới hạn.
  • Nếu dãy số (un) giảm và bị chặn dưới thì nó có giới hạn.

Chứng minh tính tăng và tính bị chặn:

Chứng minh một dãy số tăng và bị chặn trên (dãy số tăng và bị chặn dưới) bởi số M ta thực hiện: Tính một vài số hạng đầu tiên của dãy và quan sát mối liên hệ để dự đoán chiều tăng (chiều giảm) và số M.

Tính giới hạn của dãy số ta thực hiện theo một trong hai phương pháp sau:

Phương pháp 1

Đặt lim un = a. Từ lim u(n+1) = lim f(un) ta được một phương trình theo ẩn a.

Giải phương trình tìm nghiệm a và giới hạn của dãy (un) là một trong các nghiệm của phương rình. Nếu phương trình có nghiệm duy nhất thì đó chính là giới hạn cảu dãy cần tìm. còn nếu phương trình có nhiều hơn một nghiệm thì dựa vào tính chất của dãy số để loại nghiệm.

Chú ý: Giới hạn của dãy số nếu có là duy nhất.

Phương pháp 2: Tìm công thức tổng quát un của dãy số bằng cách dự đoán. Chứng minh công thức tổng quát un bằng phương pháp quy nạp toán học. Tính giới hạn của dãy thông qua công thức tổng quát đó.

Tính giới hạn của hàm số

Để tính giới hạn của hàm số ta có thể thực hiện một số phương pháp như sau:

  • Dùng định nghĩa để tìm giới hạn
  • Tìm giới hạn của hàm số bằng công thức
  • Sử dụng định nghĩa tìm giới hạn một bên
  • Sử dụng định lí và công thức tìm giới hạn một bên
  • Tính giới hạn vô cực
  • Tìm giới hạn của hàm số dạng 0/0
  • Dạng vô định

Dưới đây là một số công thức tính hàm số vô cùng cơ bản:

Cách tính giới hạn bằng máy tính

Bước 1: Nhập biểu thức vào máy tính

Bước 2: Sử dụng chức năng để tính giá trị biểu thức

Bước 3: Gán các giá trị như sau:

+) Giới hạn vô cùng dương: gán số 100000

+) Giới hạn vô cùng âm: gán số -100000

+) Giới hạn về 0: gán số 0.00000001

+) Giới hạn về số bất kì (ví dụ +3): gán 3.000000001

Tính giới hạn là một dạng bài tập cơ bản, tuy nhiên dạng toán này vẫn chiếm một vài câu trong đề thi trung học phổ thông quốc gia. Các bạn cần đảm bảo tính chính xác khi làm. Đặc biệt có thể sử dụng máy tính Casio để có thể tính toán nhanh và chính xác nhất.

Chuyên đề giới hạn và liên tục

CÁCH TÍNH GIỚI HẠN HÀM SỐ NHƯ THẾ NÀO?

TÍNH GIỚI HẠN HÀM SỐ DẠNG XÁC ĐỊNH

Đơn giản là thay điểm vào biểu thức trong dấu lim để tìm giá trị cần tìm.

TÌM GIỚI HẠN HÀM SỐ DẠNG BẤT ĐỊNH

Xét các dạng bất định phổ biến và tìm cách phân giải từng dạng đó.

1. TÌM GIỚI HẠN CỦA HÀM SỐ DẠNG 0 TRÊN 0

Chia thành 2 loại: Loại không chứa căn và loại chứa căn.

Loại không chứa căn bao gồm các loại giới hạn đặc biệt và loại phân thức mà tử và mẫu là các đa thức.

Giới hạn đặc biệt dạng 0 trên 0 được đề cập đến trong chương trình phổ thông hiện nay là:

Cách tính giới hạn dạng 0 trên 0 loại đa thức trên đa thức đối với từng trường hợp riêng biệt.

Còn để tính loại chứa căn ta thực hiện nhân cả tử và mẫu với biểu thức liên hợp.

Với căn bậc 3 ta cũng làm tương tự.

Ta có:

Trong trường hợp giới hạn có cả căn bậc 2 và căn bậc 3 ta thêm bớt 1 lượng để đưa về tổng hiệu của 2 giới hạn dạng 0 trên 0.

GIỚI HẠN DẠNG VÔ CÙNG TRÊN VÔ CÙNG

Với dạng giới hạn vô cùng trên vô cùng ta giải bằng cách chia cả tử và mẫu cho x với số mũ cao nhất của tử hoặc của mẫu.

Với dạng vô cùng trừ vô cùng ta thực hiện theo 2 phương pháp: Nhóm ẩn bậc cao nhất hoặc nhân liên hợp.

Với giới hạn dạng 1 mũ vô cùng ta tính thông qua giới hạn đặc biệt sau.

Về bản chất giới hạn dạng 0 nhân vô cùng có thể đưa về dạng 0 trên 0 hoặc dạng vô cùng trên vô cùng qua 1 vài phép biến đổi.

Phân loại và các phương pháp giải toán trong chuyên đề giới hạn

Bài 1: Giới hạn của dãy số

Bài 2: Giới hạn của hàm số

Bài 3: Hàm số liên tục

You May Also Like

About the Author: admin